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Abstract. The recognition of twinning and the determi-
nation of the twin laws are nowadays often entrusted to
“black-box” software packages. This approach may be
both risky and uneconomical. It is risky because never a
procedure should be blindly applied. It is uneconomical if
procrastinates the analysis of twinning at the very late
stage of structure solution and refinement, whereas in
many cases this analysis can and should be applied much
earlier. In this paper we present a brief survey of the
working strategies to be applied to the structural study of
twinned crystals, emphasizing the role of the crystallogra-
pher, rather than that of the machine.

Introduction

Nowadays the solution of the crystallographic problems is
often entrusted to automatic machines and software
packages, and the crystallographer sees his role shrinking
towards that of a technician who pushes the appropriate
buttons. In particular, structural crystallography risks to be
considered simply a tool and to see overlooked and forgot-
ten its status of interdisciplinary science. As a matter of
fact, crystallography has entered a perverse cycle: space
for basic crystallographic education is shrinking every-
where, non-specialists who use crystallography as a tool
are increasing in number and they demand more powerful
“black-box” packages, these packages offer a blind analy-
sis, and the need for a “specialist of crystallography” is
felt almost everyday weaker (Nespolo and Ferraris, 2003).
The important contribution given by professional program-
mers to the routine structural work of the crystallographer
is beyond doubt. However, these programmers not always
come from a sound crystallographic background, a fact
which sometimes brings in use non-standard language
(thus generating a confusion which is even inherited in the

literature, as discussed below) and implementation of
blind solution-seeking strategies.

This problem is becoming particularly severe in case of
twinning. Twins, especially in the mineralogical field,
were considered an important object of investigation from
the crystallographic, morphological and crystal-growth
viewpoint (see, e.g., Friedel 1904, 1926; Buerger, 1945,
1954; Cahn, 1954; Hartman, 1956; Holser, 1958; Takano,
1973). Twins are so peculiar “objects” that Takeda (1975),
following an idea by J. D. H. Donnay (Takeda, personal
communication) introduced the term geminography (from
the Latin “geminus” for twin) to mean a specific “science
of twinning”, namely the complex of notions and experi-
ence specifically addressing the treatment and solution of
the structure of twinned crystal.

But when molecular crystallographers, who are inter-
ested more in the structure and conformation of the mole-
cule rather than to the crystal structure, “discovered” the
phenomenon of twinning, twins came to be considered
simply an obstacle to the automatic solution and refine-
ment of crystal structures, and were relegated to the role
of “demons” (Flippen-Andersen et al., 2001), together
with disorder, polytypes and modular crystallography, as
shown by the homonymous microsymposium at the XIX
IUCr congress (IUCr 2002). As a result, the demand of
crystallographic tools capable of dealing with such “de-
mons” increased dramatically, actually leading to the intro-
duction of successful methods for the treatment of twin-
ning in the programs for the solution and refinement of
crystal structures (Herbst-Irmer and Sheldrick, 1998).
These programs are of invaluable help, provided that the
twin laws have been correctly identified by the user. In
fact, an automatic software is still unable to foresee and
treat all real cases. The skill and experience of recogniz-
ing a twin and the corresponding transformation matrices
remains thus of paramount importance for the structural
crystallographer.

Notwithstanding, even the identification of the twin
law(s) is nowadays tentatively entrusted to black-box soft-
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ware packages (Cooper et al., 2002). Whereas the auto-
matic analysis and treatment can be successful in common
cases, daily experience shows that failure by these “black
boxes” in solving the structure of a twinned crystal is not
at all an exception. When it comes to more complex
cases, like those of multiple individuals1 or of twinning
by metric merohedry (i.e. twins in which the individuals
have a metric of their lattice higher than that required by
their space group: Nespolo and Ferraris, 2000), the expec-
tation of success is even lower. Besides, this automatic
analysis is applied at a very late stage, during or even
after the structure solution (assuming that an acceptable
solution can be found when being still unaware of twin-
ning, which generally is not the case), i.e. in a very un-
economical way. For all the reasons exposed above, it is
worth summarizing the strategies for early-stage identifica-
tion of non-merohedric twinning. Before that, however, it
is necessary to make a bit of order in the nomenclature.

The problem of terminological imprecision

In the recent literature the adjective “merohedral” has be-
come a sort of “hybrid” with unclear meaning. “Merohe-
dral”, in contrast to “holohedral”, identifies a crystal
whose point group is a subgroup of the point group of its
lattice (Friedel, 1926). A merohedral crystal may undergo
twinning by merohedry: the twin operation belongs to the
point group of the lattice of the individual but not to the
point group of the structure. But the same crystal can as
well, although less frequently, undergo twinning by reticu-
lar (pseudo) merohedry, provided it possesses in the direct
space, exactly or approximately, a sublattice (i.e. a lattice
built on a supercell of the cell of the individual) of higher
symmetry. This is the same kind of condition for the twin-
ning of holohedral crystals. In this case, the twin opera-
tion belongs to the point group of the sublattice, and not
to the point group of the lattice.

Expressions like “merohedral twins” or “non-merohe-
dral twins”, so often employed today, are confusing in the
fact that they refer to the twin a feature of the individual,
without a 1 : 1 correspondence between them. Rigorously
speaking, “merohedral twin” should indicate a twin of a
merohedral crystal, which not necessarily is a twin by
merohedry. Authors who find too cumbersome the use of
the original locution “twinning by merohedry” and abso-
lutely need an adjective to label the type of twinning,
should employ the adjective “merohedric”, introduced
long ago with specific reference to the twin, precisely to
avoid any confusion with the characteristics of the indivi-
dual (Catti and Ferraris, 1976).

Optical analysis at the pre-data collection stage

The first indication of possible twinning can be obtained
from a morphological observation, at least when the forms

of the crystal are sufficiently developed. Among the mor-
phological features of twinning, the presence of re-entrant
corners is most typical (Kitamura et al., 1979). Besides,
several morphologies are so typical of twins that, with
some rare exceptions (Pabst, 1971), they should be consid-
ered as strong signals (Shafranovskii, 1973).

The observation under polarized light can also reveal
the presence of twinning, at least in case of non-merohed-
ric twins. Non-merohedric twins in fact, as well as twins
by metric merohedry, are composed by individuals related
by a twin operation which belongs to a holohedry higher
than that of the crystal. In other words, the twinned indivi-
duals have orientations that are not equivalent under the
symmetry operations of their holohedry. Consequently, the
principal axes of their optical ellipsoids in general do not
coincide (Nye, 1987). The observation under the polariz-
ing microscope reveals the presence of twinning through
the different position of extinction shown by different indi-
viduals.

Pre-structure solution analysis I.
The geometry of the diffraction pattern

The second step in the “search for twinning” consists in
the analysis of the geometry of the diffraction pattern,
which can reveal two distinctive features of twins: 1) split-
ting of reflections; 2) non-space group absences. The split-
ting appears at glance if the investigator records the dif-
fraction pattern with a bidimensional detector like CCD
camera, image plate and film. When only a point-detector
is used in the diffraction study, attention must be paid to
the shape of the peaks.

In the following, the term “twin lattice” is used without
specific reference to its derivative nature. However, it is
implicitly understood that in case of non-merohedric
twins, the twin lattice is a sublattice of the crystal lattice
in direct space (the group of translation is a subgroup, i.e.
the unit cell is larger), whereas it is a superlattice in reci-
procal space (the group of translation is a supergroup, i.e.
the unit cell is smaller). The diffraction pattern of the twin
derives from the superposition of the diffraction patterns
of the individuals and it corresponds to a lattice only
when a univocal correspondence between reflections and
nodes does exist.

1) When the obliquity (Friedel, 1926) of the twin is
sufficiently large to show split reflections contributed by
the different individuals, the presence of twinning by (re-
ticular) pseudo-merohedry is easily recognized. This split-
ting, however, may appear for some classes of reflections
only: it is thus necessary to observe the diffraction pattern
of some reciprocal planes. Besides, the splitting increases
with the diffraction angle, and should thus be looked for
in the regions of the reciprocal space farther from the ori-
gin, when it does not appear at low angles. This type of
twinning is easier to recognize, but more difficult to treat,
because the intensities from different individuals are not
(exactly) superposed. For low (quasi-superposition) and
high (clear splitting) obliquity, the treatment is relatively
easier, whereas for intermediate values the partial super-
position of the intensities requires a correction which is
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function of hkl and of the actual shape of the peak, and
can be rather complex, limiting the quality of the structure
refinement which can be obtained. On the other hand, the
relative intensity of split reflections permits to obtain the
volume ratio of the individuals.

2) Twins by reticular merohedry usually produce a dif-
fraction pattern containing systematic non-space group ab-
sences, which are an alert signal for the presence of twin-
ning. Let n be the twin index2; n’ the ratio between the
order of the twin lattice point-group and the order of the
individual point-group; and n00 the number of individuals.
To each node of the twin reciprocal lattice, a reflection
may or may not correspond, depending on whether reflec-
tions from one or more individuals appear or not on that
node. The nodes of the reciprocal lattice common to all
the individuals (i.e. the nodes overlapped in both the reci-
procal lattice of the individuals and the reciprocal twin
lattice) always correspond to reflections: these are the re-
flections (one out of n) which are always overlapped for
all the individuals. Other n00 � 1 reflections come from
each individual but are not overlapped, because they corre-
spond to nodes of each individual reciprocal lattice which
do not overlap in the reciprocal twin lattice. The result is
that, in general, in the diffraction pattern we observe sys-
tematic non-space group absences coming from the incom-
plete correspondence between the nodes of the twin reci-
procal lattice, and the reflections coming from the n00

individuals.
When such systematic non-space-group absences ap-

pear, the search for the twin law should proceed while
taking into account the following criteria:

1. the reciprocal cell of the individual is n-times larger
than that of the twin (the reciprocal lattice of the
individual is a sublattice of the twin reciprocal lat-
tice);

2. the reciprocal lattice of the individual should not
contain systematic non-space-group absences;

3. the twin operation must be found among those op-
erations which are symmetry operations for the twin
lattice but not for the lattice of the individual; the
twin lattice must be re-obtained by applying this op-
eration to the lattice of the individual.

These non-space-group absences do not appear in the
diffraction pattern of a non-merohedric twin when each
node of the twin reciprocal lattice is occupied by a reflec-
tion from one or more individuals. Such a diffraction pat-
tern may appear when n00 ¼ n0 � n. This is the only case
when a non-merohedric twin cannot be identified by the
geometry of its diffraction pattern.

Pre-structure solution analysis II.
The diffraction intensity

When the diffraction pattern does not show non-space-
group absences, the presence of twinning can still be in-
vestigated on the basis of the symmetry of the diffraction
intensities and of their statistic (Giacovazzo, 2002), keep-
ing into account the effect of the relative volume of the
individuals and of the relative orientation of the indivi-
duals.

1. The twin operation appears as symmetry element for
the measured intensities only if the volume of the
individuals related by that element is similar (ideally
identical). Otherwise, the twin elements appear only
in the geometry of the diffraction pattern.

2. Symmetry elements of the individuals which are not
parallel in the twin do not appear in the diffraction
pattern (Buerger, 1954).

If L is the Laue point group as obtained from the dif-
fraction pattern, H the holohedry which corresponds to L,
and G the point group derived from the geometry of dif-
fraction pattern, the following cases can thus be recog-
nized:

1. H � G (ex. L ¼ 4=m, H ¼ 4=mmm, G ¼ m�33m).
Such a diffraction pattern can be produced by: a) a
twin by reticular merohedry in which the individuals
have different volume; or b) a crystal with a specia-
lized metric of the lattice (the Bravais class of the
lattice is a t-supergroup of the Bravais class of the
space group3), untwinned or twinned by metric mer-
ohedry (Nespolo and Ferraris, 2000).

2. H ¼ G. The presence of twinning can be recognized
only at the stage of structure solution. This situation
can correspond to a non-merohedric twin only when
all the individuals of the twin have the same volume.

Structure solution stage analysis

As seen above, the sole case of non-merohedric twinning
which can be recognized, from its diffraction pattern, only
at such a late stage is the rare case in which the diffrac-
tion pattern does not present non-space-group absences
and the symmetry of the intensities is consistent with the
geometrical symmetry of the diffraction pattern because of
the identical volume of the individuals. In the unfortunate
case the investigator has also failed to recognize the pre-
sence of twinning by the observation under polarized
light, the situation becomes parallel to the case of class
IIA merohedric twins (Nespolo and Ferraris, 2000). Here,
the twin operation overlaps reflections which are not
equivalent under the Friedel law and an acceptable struc-
ture solution cannot be obtained, unless the twin opera-
tion(s) are very close to symmetry operation(s) for the
structure (case of marked pseudo-symmetry), in which
case it is the refinement which shows anomalies. Several
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group has higher point symmetry but the same translational symmetry
(Wondratschek, 2002).



tests on the intensities can be applied to reveal this type of
twinning (Kahlenberg, 1999).

In the case of class I, the twin operation overlaps re-
flections which are equivalent under the Friedel law (Catti
and Ferraris, 1976). The structure can be solved and even
refined to an acceptable degree. However, warning signals,
although weaker than in all the previous cases, remain, in
particular a distribution of intensities midway between
centric and acentric (Viterbo, 2002), unusual displacement
parameters or, if the group chosen is acentric, the impossi-
bility of fixing the polarity of the crystal. These signals
require critical analysis by the investigator and cannot be
entrusted to a “black-box” software package.

Conclusions

The on-going trend towards automatization of crystallo-
graphic investigation is transforming the crystallographer
into a technician often unaware of what the machines and
software packages he uses are doing. The example of en-
trusting the non-merohedric twin inspection to the late
stage of automatic computer analysis of the collected dif-
fraction pattern has been presented, showing that, in most
cases, such an analysis can be performed in the early-
stage. The choice is, once again, between a black-box tool
whose answers are accepted uncritically, and a human eva-
luation based on crystallographic education and working
experience.
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